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ABSTRACT

A general theory of omnidirectional scattering of electro-

magnetic waves from rough surfaces is developed under the tangent

plane approximation. It is shown that the results obtained are

much more general than those of what is usually called the "physical

optics" method.

The depolarizing effect of rough surfaces is established, and

the reciprocal character of the depolarized component is shown for

the back-scattered case.





I. Introduction

Many theories (Hayre, 1961; Daniels, 1963; Fung, 1964;

Hagfors, 1964; Beckmann, 1964) on scattering from rough surfaces

employ the Kirchhoff-Huygens principle and conclude that there is

no depolarization for backscattering. Their results also lead to an

expression for backscattered power which is proportional to the

square of either one of the Fresnel reflection coefficients, depending

on whether the incident plane wave is vertically or horizontally

polarized. Such results are actually over-approximated, and conse-

quently the conclusion obtained on depolarization is in error. Such

an error shows up also in books on wave propagation and scattering

(Beckmann and Spizzichino, 1963; Kerr, 1951). The following

discussion will show that depolarization is generally present even

in backscattering, and that the return power expression depends on

both Fresnel reflection coefficients instead of just the "square of one

for either vertical or horizontal polarization. Such a result appears

to explain the behavior of rough-surface scattering much better than

any of the previous theories.

II. The Scattered Field

Consider the case of a plane electromagnetic wave with

harmonic time dependence, exp (j_0t), incident obliquely at an

angle, 6), on a smoothly-undulating, finitely-conducting surface,

z(x,y) (see Figure 1). The far-zone re-rediated electric field, Es,

at the point, P, can be expressed (Silver, 1947) as follows:

E
,--s

where

(P) = K n 2 x/_ In xE - Nn 2 x (n xH)] exp Ok[" n 2) dS,

r is a vector from the origin of the coordinate system to
the surface element dS,

n 2 is a unit vector from the origin to the field point in the
direction _, _,

(i)



R is the distance from the origin to the field point,

n I is a unit vector in the incident direction which lies in

y- z plane,

E,H are the total electric and magnetic fields on the surface,

r7 is the intrinsic impedance of free space,

k is the wave number,

n is the local unit normal to the surface,

K= (-jk exp (-jkR) /4_ R).

Let us now assume the validity of the tangent plane approximation

for the problem and determine the values of n x _ and n x H at each

point on the surface, z (x,y). This can be done by resolving the

incident plane wave into local polarization components parallel

and normal to a local plane of incidence and then working out the two

components separately. To do so, let the incident electric and

magnetic field be defined by

E i=aE ° exp (-jkI. r)

=aE;

(2)

nlxa
H. = E; (3)

exp ( - jk 1. r) and _ is the polarization vector; andwhere E = E
O

k 1 = k n l.. In view of the local coordinates defined in Figure 2, we

can write the normally polarized components of the incident fields as

E i = (a.t I) t I E,

and the components polarized in the plane of incidence as

E i : [(a n) + (a • p) I E2 • - n .- - p ,

Hip = [ (a. n) (nI xn) + (a. p) (nI xp) ]
E/n .

(4)

(s)

(6)

(7)



From the equations above, we obtain, in view of the boundary conditions

from electromagnetic theory (Stratton, 1941),

nxE=_xE 1 +9xE 2

E i Er=nx 1Ei (1 + R1)+._nx.2 +nx_.2

•-- ri (i+ Rl)+ m_ _ R2 xnobnx 1 nx xnl) _7 + nx

= _ • H i (i - R2), (8)n xE_ (i + RI) + (n nl) N.2

Rl, R2 are the Fresnel reflection coefficients for the normally
polarized and parallel polarized waves respectively,

n is defined in Figure 2.o

Similarly, we obtain

nxH=nxH I +nxH 2

i ,.1 H i (1 + R2),= (n • nl)(l - Rl)E1/_ + n x_2 (9)

where we apply the fact that n • n I = n • n in (8) and (9)._% 4e _O

To obtain n x E and n x H in terms only of the incident electric field,

we can substitute (4) and (7) in (8) and (9). These give

nxE= (1 + RI) 2 (a-t I) E

+ (n.. nl)(l - R2)[(a • n) (ni xn)+ Ca'.._P)_l xp)]E

= (i + RI) (a_,• i1) -.PE

- (n. nl) (i- R2) [(a.n)(n-dl)_i+ _.p) _.d I)}alE; (io)

nxH= - (n.n i) (i-R i) _'_i).tiE/n

(i+ R2) [_. n) (n- dl) 2 + (a-p) (.pp.di) _]E/_. (1 l)



Substituting (I0) and (Ii)into (I), we obtain

E (P) = Kn 2 xIE {(I + RI)(a. il)p-(n • n I) (I- R2)

[_a.n__n.d_-h÷Ca'_3_'_-h]÷_.n__-R_a.__2x_

+_+_[c__.n__._ _ x__+t_"_3t_'_-___ xg]}

exp (jkr.n 2) dS

-[(n'nl)(1-R2)_1 •

- (n._n I) (1- R I) (a

(l+ R1)(a.71)(p.!2)

•_hl_. d_ ] _d_

I(n.n1) (1-R1)

•I_1ds,

(l+R1)_!_)

[ (a'n)(n'dl)+(a'p)(P'dl)])...-._ __ ..._ _-

(12)

where t 2, d 2, are defined in Figure 3.

This is the general result for the scattered field in the direction

n 2. Sinced 2 and t 2 are vectors with components in x, y, and z

directions, and a is a fixed vector in x direction for horizontal polari-

zation and in y-z plane for vertical polarization, it is seen that

depolarization is present in the general case. Another way to see

this is to note thatd 2 andt 2 are vectors defined with respect to

n2, which may take on any direction; whereas a is a fixed vector

once the incident polarization is defined.



III. The Backscattered Field

An important special case for the scattered field is that of

backscattering, i.e., whenn 2 =-nl, d 2 = d.l and t2 = ,tI. In

this case, (12) reduces to the following expression:

: -K I"2E° (n • n l) exp(-j 2k I • r)
..J

[ +

}.-(a'tl) R1 t I d S . (13)

From (13) it is seen that since the local coordinates defined by

_l' tl ' and _ are independent of the direction of polarization, _,

of the incident field, we again conclude that depolarization is

generally present. The effect of depolarization will, however,

become very small for the special case of vertical incidence (see

appendix). In the case of horizontal polarization, depolarization

will also vanish for the special case when/[ is in the plane of

incidence, since a. n,and an. pwill then be zero, andt I is parallel

to x direction. Similarly, there is no depolarization for the vertical

case when the local normal, n, is in the plane of incidence, since

a • tI is zero. However, the last two cases are of interest for

surfaces that are rough in only one dimension.

The above discussion shows that the depolarized field

component depends strongly on the local normal, n, which in

turn depends on the surface slopes. Hence, for a surface which

is uniformly rough in two dimensions, the depolarization component

is, in principle, a measure not only of the surface roughness but

also of the average surface slope.

The character of scattering by rough surfa'ces is brought

out most clearly by (13), if we note that n, _,, _. is a set of local

coordinates, and (a. n), (a. _) and (a. _) give the relative sizes

of the components of the incident field. The amount of depolarization

is then seen to be directly related to the sizes of these components.

The power expression given by

--L1 E • E* (14)
P = 2_ mS mS



clearly involves not only one term with the square of one of the

Fresnel reflection coefficients, but also another term or terms

multipled by the square of the other Fresnel reflection coefficient.

This follows from the direct substitution of (13) into (14). In

what follows we shall investigate the reciprocal character of the

depolarized field component in backscattering.

IV. Case of Horizontal Polarization

Let us now assume that the incident electric field is

polarized perpendicular to the plane of incidence, y-z. Let the

unit vectors along the x, y, and z axes be i, _!4'and _,k"Then,

from calculus, the local unit normal to the surface, Z(x,y), can

be expressed in terms of the partial derivatives of the surface as

1

= - +k) (l+z 2+z 2)--2(-]zx _Zy _ x y '
and the differential surface element as

1

d S = (i + Z2 + Z2 ) - _ dxdy .
x y

Of course, nI can also be expressed in terms of the unit vectors,

j and k, and the incident angle, e, as

n I =j, sine + _ cone.

Now from Figure 2, and with (15) and (I6) we can write the unit

vectors tI , p, d I in terms of the unit vectors i,j, k the angle of

incidence, e, and the partial derivatives of the surface function.

Thus,

1

tl: _i " n)(1- (nI • n)2 )-7

= (i_(sine - Zy cone) +_j Zxcose +_k Zx sinO)/Dl "

(15a)

(15b)

(i6)

(17)

i0 ¸



_=nx h

= (-i(ZZy sine + Z x cose) +_J (z 2 sine + sine - Zy

+ k (Zy sine- Z 2 cose -z 2 cose) )/ (DID 2) ;.,,1 y x

cose)

(18)

dI =n 1 x_ 1

= (i_ Z x + _J cose (Zy cose - sine)

- k sine (sine -Z cose) )/D 1 ;_ y

where D 1 = (1 + Z 2+ Z 2- (cose + Z sine) 2)x y y
1

D 2 = (1 + Z 2 + Z 2)X

1
2

(19)

With (15) through (19), and noting that a= i, we can calculate the

following quantities, namely

(a • t )= (i • t )= (sine - cose Zy)/D 11 _ 1

• = _ + cose)/D 2(n _tl ) (sine Zy

_. n): (_.n):- Z/D 2 ,

(n_ • dl)= -(Z2x + c°s2e Z2y- 2sine cose Zy+sin2e)/(DiD2) ,

" = - + cose) Z / (DID2) ,% _p)= (i" p) (sine Zy x

(p' d)= (n. _j.).

Substituting (20) in (13) and simplifying, we get

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

ll



K/ + cos8) / D 1E s (P)= -2 Eo (sine Zy

R (sine - cos8 Zy )_i

-R2 Zxdll exp (- 2jk I • r) dxdy

= _ "_. + cos8) / D 12K E° exp (- 2jk I r) (sine Zy

J

i [R2Z - R1 (sine - cos8 Zy

-_ cose + k sine) Zx (sine - cose Zy) (R1 + R2)_ dx dy,

2 = (sine - cos8 Z )2 + Z 2
where D 1 y x

(21)

It is interesting to note that the iterm in (21) will reduce to

the results used by previous authors, if Z 2 - terms are neglected.
x

Thus, leaving out the depolarized component in (21), the scattered

field takes the form

E (P)=-i 2KE (R l(sine Z +cose) exp(-2jk1__. • r) dxdy O

mS -- O3 Y --

This form is seen to check with equation (5) used by Hagfors I0.

(22)

V. Case of Vertical Polarization

Here we assume that a= j cos8 + k sine . In the same

fashion used for the horizontally polarized case, the scattered

field can be obtained by substituting (20) in (13), except now

(20a), (20c) and (20e) take the form

(a. if)= (j..cose +_k sine) • t1 = Zx/D 1 ,

(a. n) = (sine - cose Zy ) / D 2 ,

(a" p) = (sine cose + (sin2e - cos2e)Zy - sine cose Z2)/(D1D2 ) .

After some simplification, the final form for the scattered field becomes

12



Es(P) = -2 KSE ° (sine Zy + cos8) / D 1

[R2 (sine - cose Zy)d i + R1 Zx!l ]

exp (-2jk I • r) dx dy

• + cose) / D 12= 2 KE ° exp (-2jk 1 r) (sine Zy

(R (sine - cos@ Zy) 2 - R1 Z 2 ) (j cos@ + k sine)
X _a

+ .iZx (sine - cos8 Zy) (R1 + R2)] dx dy . (23)

The depolarized component, _2d ' in this case is seen to be

= ; • + cose) / D 1 2E2d i2KE ° exp (-2jk 1 r) (sine Zy
_w

Zx (sine - cose Zy) (R 1 + R2) dx dy . (24)

The depolarized component, Eld , for the horizontally polarized

case is from (18) :

a'-

= - • + cose)/o Eld _cose +_ sine) 2KE ° exp (-2jk I r) (sine Zy

Z (sine - cose Z ) (R1 + R2) dxdy . (25)x y

Hence, we conclude that aside from the unit vectors, the magnitude

of the backscattered depolarized field component obtained by trans-

mitting a horizontally polarized plane wave is the same as that

obtained by transmitting a vertically polarized plane wave, except

for a minus sign when the scattering process is considered with

respect to the same surface.

VI. Conclusions

In general it is found that there is a depolarizing component

even for backscattering. The interrelationship between the backscattered

field due to an incident horizontally-polarized wave and that due to a

vertically-polarized wave is clearly shown in (13). Such a result then

13



provides better understanding of the depolarization process as well

as the scattering process. The error in previous works is seen to

result from using an over-approximated surface current which does

not sufficiently exhibit the effect of the rough surface. While this

error may be small for surfaces with small slopes in average return

power consideration, it is a serious one in depolarization considerations.

The reciprocal character of the depolarized electromagnetic

field resulting from scattering by a smoothly undulating surface is

established for the case of backsca_ering. This is the case of greatest

interest, since many radar experiments 11-15 on the moon and other

planets, as well as on natural earth terrains, fall into this category.

Although the proof is given for any surface to which the tangent plane

approximation is applicable, it seems intuitively plausible that any

differentiable surface may have the same character.

14



APPENDIX : Case of Normal Incidence

In view of Figure 2, we obtain

_nI xn

_l = [1- (nI . n)2] i/2

i (sin % - Zy cos 8) + j Zx cos 8+kZ x sin 8

2 + Z 2 (cos % + Z sin 8)2 ] 1/2l+Zx y - y

Pl = -i,_(ZxZy sin % + Zx cos 8) +_..j(Zx 2 sin @ + sin @

2 2

-Zy cos @) +k (Zy sin % - Zy cos 8 - Zx cos 8)

2+Z 2) (l+Z 2+Z 2 (cos 8+Z sinS)2)] -i/2(i+ Zx Y x y - y

d I =_iZx+_._ j cos @ (Zy cos @ - sin 8) - k sin @ (sin @ - Z cos 8)
-- y

i + Z 2 + Zy2 _ (cos 8 + Z sin 8)2 ] -I/2x y

where Z , Zy are the partial derivatives of the surface, Z(x,y). Forx
vertical incidence, the above expressions reduce to

Jl = (-my_+_jz$ (Zx2+ zy2) -I/2

:[ !z <Zx+

(I + Zx 2 +Zy 2) (Zx2 +Zy 2) ] -I/2

. ] (Zx2 2 ) -1/2Jl : _iZx÷JZy ÷zy

As sume horizontal polarization i.e., a = i, then,

15



1
+ Z2 + Z2x y] -7a • n:i (-iZ -_Z +k) [I

_ _ _ _ X y
1

=-z x(l+z2x +zw 2)-7

1 1

n. dI : - (Z2x+ Z2 )7 (i + Z 2 + Zy2) -7y x

1

CZ x+
._ X X y

1

P" _l = -(I+ z2 + z_)-7
_,_ X

1

_" h = -zy (Z2x+ z2y)-7

i
(a • n) (n • d I) + (a • p) (p • d I) = Zx (Z2x+ Z 2 ) -7

I,_ ,*_ _ Y

Substituting the above result into (1 3), we obtain

E
S : -2K_E o _. n I) exp (-j 2k I • 9

[R2Zx(ZZx+z2)-i(iz +izy)
y _ x

+R1zy(-izy+iZx)(Z2x+z2y)1 ]ds

:-2K_ E° (n" nl)(Z2x+ Z2y)-I exp (- j 2k I " 9

i (R 2 Z 2 - R1 Z 2 ) + j Z Z (R1 + R 2) ] d S
X y _ x y

At vertical incidence R1 tends to the negative of R2 (since

the surface is assumed to have small slopes) and, therefore, the

term in _ direction becomes very small. Observe that R 1 is not

identical with the negative of R2 for vertical incidence. Although

in this case the angle of incidence is zero, the local angle of

incidence, of which R 1 and R2 are functions, may not be: that is,

the normal to the surface is not necessarily in k direction.

16
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